fForm Approved

REPORT DOCUMENTATION ?AGE OMB No. 0704-0188

Public reporting buraen for this coilection of information 15 estimated 1O average ! nour per resporse, inciuding the time tor reviewing instructions, searching existing data sources.
gathening and maintaining the data needed. and campieting and reviewing the collection of information Send comments reqardirg this burden estimate or any other aspect of this
collection of information, inctuding suggestions tor reducing this burden. 10 Washington Heaaauarters Services, Directorate for 'nformation Operations and Reports, 1215 Jetferson
Davis Highway, Sutte 1204, Arlington, VA 22202-4302, and to the Office of Management and 8udget, Paperworx Reduction Project {0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1996 technical
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

|OZONE Distributed Communication Library

6. AUTHOR(S)

|Ora Lassila & Marcel Becker
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. :Egg%r;uﬁm iﬁ';“"'zm'o"
ghe Ro.bolt\l;[cs1 1Inst[iEut.e .
Pitisburgh, PA 15213 CMU-RI-TR-96-11
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION : AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
Distribution unlimited

13. ABSTRACT :Maximum 200 woras)

This report describes the distributed architecture and distributed

rogramming primitives of the OZONE framework, a toolkit for building
lanning and scheduling applications. It also serves as a programmers’
eference manual for those who want to build distributed system components
cither in the context of OZONE-based scheduling systems or in the context of
some entirely new applications.

The class library documented in this report has two parts: The first part,
limplemented in CLOS, provides classes for such concepts as SERVER, CLIENT and
ICOMMAND. The second part is a function library written in TCL, allowing

clients - including user-interface clients - to be built using TCL.

14. SUBJECT TERMS 15. NUMBER OF PAGES

26 pp

[PV RIS NS 1

o mh A

16. PRICE COOE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION {20. LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT
unlimited unlimited unlimited unlimited
NSN 7IANATIIRNGRESN l+aroarc Sorm 238 Fey 1.3%0

DTIC QUALITY INSPECTED 4

OZONE Distributed
Communication Library

Ora Lassila & Marcel Becker
CMU-RI-TR-96-11

Carnegie Mellon University
i The Robotics Institute
THE

INSTITUT Technical Report

199607 9 03

OZONE Distributed
Communication Library

Ora Lassila & Marcel Becker
CMU-RI-TR-96-11

The Robotics Institute *
Carnegie Mellon University
Pittsburgh, PA 15213

March 1996

© 1996 Ora Lassila and Marcel Becker

* This research has been supported in part by the Advanced Re-
search Projects Agency and Rome Laboratory, Air Force Material
Command, USAF, under grant number F30602-95-1-0018 (as part of
the ARPA/Rome Labs Planning Initiative), and the CMU Robotics
Institute. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied,
of the Advanced Research Projects Agency and Rome Laboratory
or the U.S. Government

DTIC QUALITY INSPECTED 4

i

Abstract

This report describes the distributed architecture and distributed program-
ming primitives of the OZONE framework, a toolkit for building planning and
scheduling applications. It also serves as a programmers’ reference manual for
those who want to build distributed system components either in the context
of OZONE-based scheduling systems or in the context of some entirely new
applications.

The class library documented in this report has two parts: The first part, im-
plemented in CLOS, provides classes for such concepts as server, client and
command. The second part is a function library written in TCL, allowing clients
— including user-interface clients — to be built using TCL.

iii

iv

Acknowledgements

The development of the communication library described in this report was
supported in part by the Advanced Research Projects Agency and Rome Lab-
oratory, Air Force Material Command, USAF, under grant number F30602-95-
1-0018 (as part of the ARPA/Rome Labs Planning Initiative), and the CMU
Robotics Institute. The design and implementation of the system are based
on an earlier OPIPE library as well as the distributed primitives included in
the DITOPS scheduler (of the first phase of the ARPA/Rome Labs Planning
Initiative), both written by Ora Lassila. Large parts of the new implementation,
including all TCL code were written by Marcel Becker.

We would like to thank Ben Werle for his invaluable help with bug fixes and
improvements to the system, as well as Stephen E. Smith for managerial and
moral support during this project.

Pittsburgh, March 1996
Ora Lassila & Marcel Becker

Vi

Contents

1 Introduction
1.1 Conceptual vs. Physical Architecture

1.2 Communication Mechanisms

2 Using the Communication Library
2.1 InstallingSoftware
2.2 Configuring Software

3 CL/CLOS Programming Interface

3.1 SEIVEIS . v v v i e e e e e e e
32 Clients. o o
33 Commands i i
34 QUEUES . . . o v o
3.5 Clientand ServerStartup
36 Debugging

4 TCL Programming Interface

vii

11
11
17
18
22
22
23

25

viil

Chapter 1

Introduction

This report will provide an overview of the communication architecture of the
OZONE! Planning and Scheduling Toolkit [5]. The communication architecture
(and its implementation as a class and function library) is suitable for building
distributed applications and agent-based systems. The principal focus of the
report is the use of the communication architecture to provide the separation
of the user interface from the rest of the scheduling system (as advocated in
[6]), thus describing the implementation of a TCL/ TK-based [4] user interface
for the various scheduling applications produced using the OZONE toolkit,
including the DITOPS Transportation Scheduler and the DITOPS Aeromedical
Evacuation Planner (see, for example, [3]).

For a quick start on how to use the communication library — how to adapt it to
a new application environment — the reader is referred to Chapter 2.

1.1 Conceptual vs. Physical Architecture

The core components of the conceptual architecture are the user interface —through
which the user communicates with the system — and the executive — which
delegates requests for services from various components of the system. Other
components of the system could include various kinds of service providers like
a scheduler, a model manager and a database (see Figure 1.1).

1Please note that in order to avoid confusion (or to create some more, some people might say),
we have decided to call the Planning and Scheduling Toolkit with the new name “OZONE” (= O3
= “Object-Oriented OPIS”), and the name “DITOPS” used earlier will refer to the transportation-
related applications of OZONE.

The conceptual architecture need not be physically implemented as shown, sev-
eral modules could be combined into larger physical components (or processes).
Indeed, the old (CLIM-based [8]) DITOPS architecture [2] has all of these com-
ponent functionalities in a single physical “package.” It must also be noted
that the conceptual architecture reflects the communication organization of the
system. This is not to be confused with lines of command and/or authority in
the system (that is, the executive is not the so-called “Top-Level Manager” of
the DITOPS scheduler). More specifically, the executive is akin to a telephone
switchboard, it is responsible for finding the recipient of communication based
on an “address” or very simple clues from the content of the communication
(for example, certain commands could always be directed to the scheduler, etc.).

User Interface

Executive

7

Database Scheduler Model Manager

Figure 1.1: Conceptual view of the system architecture

process #1
User Interface

commands from user interface
acknowledgements from executive

commands from executive
acknowledgements from user interface

process #2

Executive

Database Scheduler Model Manager

Figure 1.2: Physical view of the system architecture

The physical architecture — the actual implementation—can be realized in several
ways. For example, every component of the system can be a separate process

2

(even reside on separate physical CPUs). The approach we have chosen for the
first prototypes is to include the scheduler, the model manager and the database in
the same process with the executive. This way, the executive directly manages
the other components. The user interface is implemented as a separate process
(see figure 1.2) of the underlying operating system.

Communication between the user interface and the executive requires some
additional consideration. One should note that this is not a traditional client-
server configuration, since both components need to be able to initiate actions
and request services from the other component. From the user interface’s stand-
point, the executive/scheduler is a server, but from the executive /scheduler’s
standpoint the user interface is a server. Thus two independent lines of commu-
nication are needed. Both the user interface process and the executive process
have to be multi-threaded (or at least event-driven) processes.

TCL user interface TCL “file handler"
event processing

User Interface

commands from user interface
acknowledgements from executive

commands from executive
acknowledgements from user interface

wish-to-lisp
lisp-to-wish

"Listener" thread “Executor" thread

(synchronous (asynchronous
executor) | executor) :

queue

Executive/Scheduler

Figure 1.3: Internal Processes

The first prototype implementations (using BSD-style sockets) have the internal
architecture described in Figure 1.3. The user interface is implemented using
TCL/TK and runs on a wish interpreter. The server has the traditional CLOS
implementation of OZONE. Command processing and communication is done
in the following way:

1. On the TCL (wish) side, normal event processing causes commands to be
issued and consequently sent over the “wish-to-lisp” socket. Acknowl-
edgements are received over the same socket.

2. On the Lisp side, the “listener” thread receives the command and de-
cides whether it is a synchronous command (in which case it is executed
by that thread and results sent back with the acknowledgement) or an
asynchronous one (in which case only a “command received” acknowl-

edgement is sent back).
3. Theasynchronous commands are placed ina (semaphore-guarded) queue.

4. The “executor” thread runs in a loop, always picking the next command
from the queue and executing it. The execution of asynchronous com-
mands may cause notifications to be sent to the user interface on the
“lisp-to-wish” socket, and acknowledgements are received from TCL on

the same socket.

5. The processing of Lisp-initiated communication (such as notifications sent
by asynchronous commands) is handled by TCL's “file handler” function.

There is no distinction between synchronous and asynchronous commands on
the TCL side, since the user interface is assumed to only handle fast actions of
relatively small granularity. Also, we are not using a multithreaded implemen-
tation of TCL.

pry

user issues

command
5. user interface action
based on data received
4. acknowledgement
2. socket and return values
~ comm.

. processing
of command

Figure 1.4: Example of synchronous command processing

Figure 1.4 illustrates the processing of a synchronous command. Similarly, Fig-
ure 1.5 illustrates the processing of an asynchronous command. Asynchronous

commands are those that may take a long time to process and are therefore ex-
ecuted without the user interface having to wait. The user interface receives an
acknowledgement, however, as soon as the command is received, thus making
synchronous and asynchronous command handling (from the user interface’s

standpoint) uniform.

7. notification is

comm.

1, user issues posted in the Ul

[
)
i
| 6. notification
| 4. acknowledgement is sent

2. socket l
I
I
|

3. command i

5. processing
of command

Figure 1.5: Example of asynchronous command processing

1.2 Communication Mechanisms

Several options are available for implementing the communication mechanism.
Figure 1.6 illustrates the layered construction of this software. The “gray area”,
the communication subsystem can be implemented in a number of different ways:

e Sockets: Both “lines of communication” are bi-directional (BSD-style)
sockets. As mentioned in the previous section, this option has been im-
plemented in our first prototypes.

o Apple Events: This is the preferred mechanism on the Macintosh, since
it allows us to make both the user interface and the executive/scheduler
“scriptable” (and recordable for that matter), allowing other programs to
use these modules for implementing services.

e CORBA:Itwould also be possible to use some type of object request broker
(ORB) mechanism to implement the communication between clients and

servers.

User “top-level' commands User interface updating
& direct manipulation actions mechanism & notifcations

I A

User interface internal implementation
& communications API

Communication subsystem

Executive/scheduler
communications API

‘l’ Scheduler internal implementation

Figure 1.6: Communication architecture

Figure 1.6 shows the communication architecture from a standpoint of separat-
ing a user interface from an application. The interface-side “communications
API” has been documented in Chapter 4 and the server-side APIin Chapter 3.
It should be noted that the library can be used for other types of communication
as well. For example, two “servers” could communicate with each other using
a symmetric configuration. This type of approach makes it possible to use the
library to build agent-based systems.

Chapter 2

Using the Communication Library

There are two required steps to using the communication library: (1) allnecessary
software components have to be installed, and (2) the software needs to be
configured and customized for use in a new application environment.

2.1 Installing Software

The current implementation of the library uses dpwish, a distributed version
of the TCL interpreter. This software is available (at the time of writing) from

ftp://ftp.aud.alcatel.com/tcl/extensions/

as tcl-dp3.3bl.tar.gz.

The Common Lisp global variable *wish-command* must contain the correct
pathname of the dpwish program to enable proper startup of the system. For
example, your configuration file should contain a command like this:

(setf *wish-command* "/usr/local/bin/dpwish")

The system source code resides in a set of Common Lisp and TCL source
files. The TCL source files are loaded into the interpreter per instructions from
the Common Lisp process. By default, the lisp process expands the logical
pathname

opis:ui;kernel-tcl;

to get the physical pathname of the directory where all TCL source files reside.
Regardless of what other logical hosts and pathnames your system uses, you
should establish the logical host “opis” and a corresponding translation for
“4i;kernel-tcl;” (or alternatively you can always edit the source file).

2.2 Configuring Software

The linkage from a user interface — or some other “client” program - to an
application is implemented as follows: '

1. User’s actions are translated into API calls in the user interface.

2. API calls cause textual commands to be communicated through the com-
munication channels (in the current implementation).

3. Textual commands are parsed and translated into command objects using
a command table.

4. Command objects are executed, resulting in function calls in the appli-
cation’s implementation.

In order for the library to be used to create the user interface for a new ap-
plication, the application has to provide commands which are inserted into a
command table, implementing the linkages from named commands to functions
which provide command functionality. The global command table provided by
the library is contained in the variable *commands*. It can be used with calls
to insert-command to add commands. Here’s an example of how to add a
command called “SAMPLE” to correspond to the function sample-command:

(insert-command *commands* #’' sample-command
:name ’'sample
rasynchronousp t
.status "Executing a sample command")

From the TCL side, this command can be called as follows:

opis_synch_command "SAMPLE;"

If one wanted to pass parameters to sample-command, the call would look
like this:

opis_synch_command "SAMPLE foo 2;"

In this case the parameters would be the symbol foo (read in in the package
specified to the synchronous executor) and the integer 2.

To start the user interface, the server must call the function init-interface.
To shut it down, the function close-interface must be called. In order to
start the client from dpwish, one first needs to set the variable tclSourceDir
to contain the pathname of the TCL source directory, then “source” the file
“tcl_to_lisp.tcl”, and then call the function start_interface.

10

Chapter 3

CL/CLOS Programming Interface

This chapter documents the interface functions available in the Common Lisp
and CLOS client/server implementation of the toolkit. Same documentation
style has been used as in the book “Common Lisp: the Language” [7].

Please note that unlike the rest of the OZONE Toolkit, the communication toolkit
does not use PORK [1] as its object system, but is built using “plain vanilla”
CLOS. This allows the communication library to be used even if one does not
want to install the object infrastructure required by the OZONE framework.

3.1 Servers

Servers are entities capable of responding to outside requests. The toolkit has
a base server class (called server) which is specialized to provide the dif-
ferent kinds of server entities required by the communication and command
execution mechanism. Executors are specialized servers which read and execute

commands.

3.1.1 Server Protocol

This section outlines all generic functions which server and executor classes
have to define methods for.

server-create-name [Generic function]
server

11

This function is called when a server is created to generate a name for a server

process (it is used for debugging purposes).

server-stream [Generic function]
server

This function accesses the stream assigned to the server, to be used for commu-

nication between the server and the client.

server-process [Generic function]
server

This function accesses the server process, i.e. the lightweight control thread on

which the server is executing.

server-run [Generic function]
server

This function is the “main loop” of the server. It is called when the server is
created and started.

executor-queue [Generic function]
executor

This function accesses the command queue associated with the executor. Queues
are described later in this manual.

terminatep [Generic function]
executor

This function is called by an executor to determine if termination is requested.
If this function returns true the execution of an executor ends.

executor-read-next-command [Generic function]
executor

This function reads and returns the next command to be executed by the execu-
tor. Typically this command is read either from an external I/O stream or the
message queue of the executor.

executor-process-command [Generic function]
executor
command
args

This function is called to process (to execute) a command.

12

executor-find-queue [Generic function]
executor
other-executor

This function is used by the various executor classes to find the right message
queue object during startup. Itis called with the executor as the executor param-
eter and any other existing executor (or ni1) as the other-executor parameter. See
the documentation of actual methods to understand how this function works.

3.1.2 Server Classes

server [Class]
:stream [Initarg]

Subclasses of this class include executor. This is the base class for all servers.
The initarg stream can be used to initialize the server’s stream object.

server-stream [Method]
(self server)

This method accesses the slot stream. This slot holds the stream object that
this server uses for communication.

server-process [Method]
(self server)

(setf server-process) [Method]
value
(self server)

These methods access the slot process. This slot holds the lisp process
(lightweight thread) object on which this server is executing.

server-create-name [Method]
(server server)

This method implements the specified functionality of its generic function.

server-run [Method]
(self server)

The base server class has no associated run semantics (a warning is generated).
Subclasses need to override this method.

executor [Class]

13

:gueue [Initarg]

This class inherits directly from server. Subclasses of this class include
asynchronous-executor and synchronous-executor. Executors are spe-
cialized servers which read and execute commands. This is the base class for

various executor classes.

executor-queue [Method]
(self executor)

(setf executor-queue) [Method]
value
(self executor)

These methods access the slot queue. This slot holds the message queue
associated with the executor, if any.

terminatep [Method]
(self executor)

(setf terminatep) [Method]
value
(self executor)

These methods access the slot terminatep. This slot is initially nil. Setting
it to t terminates the execution of the executor.

server-run [Method]
(self executor)

This function runs in a loop calling first executor-read-next-command
and then executor-process-command until the executor is requested to

terminate.

executor-find-queue [Method]
(self executor)
(other null)

This method gets called when the first executor is created (no other executors
exist, so other isnil). It creates a message queue and assigns it to this executor.

executor-find-queue [Method]
(self executor)
(other executor)

This method takes the message queue of other (an executor) and assigns it to
this executor.

14

synchronous-executor [Class]
:package [Initarg]

This class inherits directly from executor. This class implements the execution
of synchronous commands. It reads commands from a socket stream and
either executes them directly (synchronous commands) or passes them on to
the asynchronous executor. The package initarg can be used to specify the
package in which commands are read.

executor-package [Method]
(self synchronous-executor)

This method accesses the slot package. This slot holds the package (ob-
ject) in which all new commands are read in. It defaults to the value of
(find-package :opis).

server-create-name [Method]
(self synchronous-executor)

This method implements the specified functionality of its generic function.

executor-read-next-command [Method]
(self synchronous-executor)

This method function reads commands from the executor’s stream and trans-
lates the commands into command objects (using the function f ind-command).

executor-process-command [Method]
(self synchronous-executor)
(command (eql -unknown-command-))
args

This method will acknowledge the command with the -1 status code.

executor-process-command [Method]
(self synchronous-executor)
(command synchronous-command)
args

This method will execute the command using command-execute and will

send back the return values.

executor-process-command [Method]
(self synchronous-executor)
(command asynchronous-command)
args

15

This method will queue the command (using add-to ~queue) for execution by
an asynchronous executor.

[Method]

find-command
(self synchronous-executor)
token

This method will call the generic function find-command with the global
command table *commands* as a parameter (see below).

asynchronous-executor [Class]

This class inherits directly from executor. This class implements the execution
of asynchronous commands. It reads its commands from its message queue.

server-create-name [Method]
(self asynchronous-executor)

This method implements the specified functionality of its generic function.

executor-read-next-command [Method]
(self asynchronous-executor)

This method will read the next command from the executor’s message queue. If
the queue is empty the method will wait for the synchronous executor to place
something into the queue before returning (waiting is done using the proper
process-wait primitive of the underlying Common Lisp system).

empty-gqueue-p [Method]

(self asynchronous-executor)

This method is used as the checking predicate for the process-wait primitive in
executor-read-next-command (for example, in our Allegro CL implemen-
tation the process-wait function is mp: process -wait).

executor-process-command [Method]
(sdfasynchronous—executor)
(command asynchronous-command)
args

This method will execute the command (using command-execute) and will
handle return values (from accumulate-value) by immediately sending

them back to the client as asynchronous commands.
[Method]

executor-output
(sdfasynchronous—executor)

16

string
&rest args

This method writes string to the executor’s stream and waits for acknowledge-
ment.

3.1.3 Server/Client Communication

This section describes the mechanisms for the server to communicate value
back to the caller (client).

accumulate-value [Function]
value

During the processing of a server command, this function will send one value
back to the client. Depending on whether the command processing is done
synchronously or asynchronously, different things will happen: during syn-
chronous processing, values are “accumulated” into a list, and at the end of
processing these values become the return values of the command function;
during asynchronous processing every call to accumulate-value sends an
asynchronous notification back to the client.

accumulated-value [Condition Class]

This condition class is used for communicating accumulated values from the
caller of accumulate-value to the currently running executor. The treatment
of the condition is different depending on the type of executor (synchronous or
asynchronous).

accumulated-value [Method]
(self accumulated-value)

This method accesses the slot value. This slot is used for communicating the
value passed to accumulate-value.

3.2 Clients

A base client class is provided for implementing clients in CLOS. This class is
not currently used by our implementation.

17

client [Class]
:stream [Initarg]
:init-token [Initarg]

This class implements client behavior. It is not used in the current implementa-
tion. '

client-stream [Method]
(self client)

(setf client-stream) [Method]
value
(self client)

These methods access the slot stream. This slot holds the stream through
which the client communicates with its server.

client-init-token [Method]
(selff client)

This method accesses the slot init-token. This slot holds the “token” (a
symbol or string) which gets written to the stream when a connection is first
established (to identify the protocol the client will be using).

connect-to-server [Method]
(self client)
&key host
port

No documentation available for connect-to-server.

disconnect-from-server [Method]
(self client)

No documentation available for disconnect-from-server.
3.3 Commands

The command mechanism provides two base classes: one for commands and
another for command tables.

18

3.3.1 Command Protocol

command-name [Generic function]
command

This function accesses the name of a command. Names are used when commu-
nicating commands over character streams.

command-function [Generic function]
command

This function accesses the function object which implements the command.
This function is called when the command is executed.

command-status [Generic function]
command '

This function accesses a string which may be displayed while the command is
executing.

command-execute [Generic function]
command
args
This function will apply args, a list of parameters, to the implementing function
of the command.

find-command [Generic function]
table
token

This function will map a command name (the token) to an actual command
object contained in the command table.

(setf find-command) [Generic function]
command
table
token

This function will physically insert a command object into the command table.

insert-command [Generic function]
table
command
&key name

19

asynchronous
class
status

This function will (optionally) create a command object and will insert it into
the command table. The parameter command is the function implementing the
particular command, or a command object.

3.3.2 Command Classes

command [Class]
:name [Initarg]
:function [Initarg]
:status [Initarg]

Subclasses of this class include asynchronous -commandand synchronous-
—command. This is the base class for all commands.

command-name [Method]
(self command)

This method accesses the slot name. This slot holds a symbol that names the
command. The name is the one that gets transmitted over the communication
link, and basically allows the command function to be called something else
than the command itself.

command-function [Method]
(self command)

This method accesses the slot function. This slot holds the function object
which implements the command.

command-status [Method]
(self command)

This method accesses the slot status. This slot holds a string which can be
displayed while the command is executing (e.g., “loading resources”).

command-execute [Method]
(command command)
args

This method implements the specified functionality of its generic function.

20

synchronous-command [Class]

This class inherits directly from command. This is the class for all synchronously
executed commands. The execution of a synchronous command by a server
blocks the client.

asynchronous-command [Class]

This class inherits directly from command. This is the class for all asyn-
chronously executed commands. The execution of an asynchronous command
by a server does not block the client.

command-table [Class]
This class implements a repository for commands, with primitives for parsing.

find-command [Method]
(self command-table)
token

This method implements the specified functionality of its generic function.

(setf find-command) [Method]
command
(self command~table)
token

This method implements the specified functionality of its generic function.

insert-command [Method]
(self command-table)
(command command)
&key name
asynchronous
class
status

This method implements the specified functionality of its generic function.

insert-command [Method]
(self command-table)
(function function)
&key name
asynchronous
class
status

21

This method creates a command object as follows: function is the implementing
function of the command. The parameter name must be specified and becomes
the naming symbol of the command. If asynchronous is false, class will default to
synchronous-command, otherwise class defaults to asynchronous-comm-
and (the command is generated using the class specified by class). The param-
eter status is the optional status string associated with the command.

*commands * [Variable]

This global variable holds the global command table.

3.4 Queues

message-gueue [Class]

This class provides an implementation of a FIFO-queue with locking using a
semaphore.

queue-lock [Method]
(self message-queue)

This method accesses the slot Lock. This slot holds the semaphore object (e.g.,
in Allegro CL a process lock) used for locking the queue during modifications.

add-to-queue [Method]
(self message-queue)

thing
This method will add thing to the queue.

remove-from-queue [Method]
(self message-queue)

This method will remove and return the next item from the queue. Two values
are actually returned: the value (or nil if queue is empty) and a boolean value
indicating whether the queue is empty or not (true if queue is empty).

3.5 Client and Server Startup

start-daemon [Function]
&key port

22

process-name

This function starts the executor daemon, a process which listens to incoming
requests to open a socket. Every socket opened is associated with a newly
created server thread. This function is called automatically (if needed) by
init-interface.

wish-command [Variable]

This variable holds the pathname of the unix command implementing the wish
interpreter.

init-interface [Function]

This function creates the executor daemon (if necessary), launches the wish
interpreter, loads interface code to wish and calls the start-interface TCL
function.

close-interface [Function]

This function will shut down the user interface (TCL) side and will then kill the

executor threads.

kill-d [Function]

This function will kill the executor daemon thread. It has been provided for
debugging purposes.

kill-p [Function]

This function will kill the executor threads. It has been provided for debugging
purposes.

3.6 Debugging

Certain variables and functions have been included to help with debugging
a system built using this library. The main problem with debugging a multi-
threaded implementation is that if an error occurs in one of the executor threads,
this thread is effectively blocked and cannot execute.

server-trace [Variable]

If this variable is true (the default), the server-trace function will produce
output into the *trace-output* stream.

23

server-trace [Function]

string
&rest args

This function works like format, all of its output is directed to the stream
+trace-output* (unless *server-trace* is nil in which case no output

is produced).
gignal-server-errors - [Variable]

If this variable is true (the default) the function server-error will signal
errors, otherwise only a diagnostic message is printed.

server-error [Function]

error

This function will signal error (an error object) as if the function exror had been
called, unless the variable *signal-server-errors*® is nil in which case
only a simple diagnostic message is printed. The error is signaled in the thread
executing the lisp listener (not one of the executor threads), so the stack for the
error will not be correct.

24

Chapter 4

TCL Programming Interface

This chapter documents the interface functions available in the TCL client im-
plementation of the toolkit. Same documentation style has been used as in the
previous chapter, but all documented entities are TCL functions.

Setting up a TCL client process requires the dpwish interpreter (a distributed
extension of the wish TCL interpreter). When a TCL client is launched (from
the server side using the CL function init-interface, the TCL function
start-interface is the first one that gets called. It will set up the TCL
function eval-asynch-commands to be used for handling asynchronous no-
tifications the server may send to the client (e.g., screen content modifications
during processing).

start_interface [Function]
host
port

This function sets up all processing on the TCL client side. The parameter host
is the name of the machine on which the server is running, and port is the socket
port number through which the communication is established. It is assumed
that the server knows these things when this function gets called. The current
implementation will allocate a free port number and communicate that to TCL.

eval_asynch_commands [Function]

This function is not called by user’s code. It is called repreatedly (during idle
time) by the TCL interpreter to read and execute asynchronous notifications
sent by the server. These notifications are (in the current implementation) in
the form of TCL function calls.

25

opis_synch_command [Function]

args

This function is called by user’s code to send commands to the server. Both
synchronous and asynchronous commands can be sent (it is up to the server to
decide the processing mode of the command). The parameter args should be
a semicolon-terminated string containing the name of the command and some
number of arguments. List objects can be expressed using the TCL list syntax
(with braces), the server will translate these to an appropriate list structure.

This function expects the server to respond in a certain manner; the first value
read back from the server is an error code: -2 indicates that an error occurred
during the execution of the command by the server, -1 indicates that the server
does not recognize this command, and 0 or a positive number indicates that
command processing was successful and this is the number of return values.
Each of the return values is assumed (in the current implementation) to be a
TCL expression. These expressions are evaluated, and the results are returned

as a list by this function.

Please note that asynchronous server commands always return 0 as their status
code. This signifies the acknowledgement of the command. Any return values
are returned as asynchronous notifications.

notify_user [Function]

message

This function can be called as a response to completed commands, for example.
It puts up a small window with the string message in it, and the user has to
explicitly dismiss the window (by clicking an “OK” button) for the function to

return.

26

Bibliography

[1] Ora Lassila, 1995. “PORK Object System Programmers’ Guide”, Report
CMU-RI-TR-95-12, Pittsburgh (PA), The Robotics Institute, Carnegie Mel-
lon University.

[2] Ora Lassila and Stephen F. Smith, 1994. “Constructing Flexible Scheduling
Systems for Decision Support”, in Proceedings of the 1994 Finnish Artificial
Intelligence Symposium (STeP-94), Turku (Finland), Finnish Al Society.

[3] Ora Lassila, Marcel Becker and Stephen F. Smith, 1996. An Exploratory
Prototype for Reactive Management of Aeromedical Evacuation Plans, Report
CMU-RI-TR-96-03, Pittsburgh (PA), The Robotics Institute, Carnegie Mel-
lon University.

[4] John K. Ousterhout, 1994. Tcl and the Tk Toolkit, Reading (MA), Addison-
Wesley.

[5] Stephen E. Smith and Ora Lassila, 1994. “Configurable Systems for Re-
active Production Management”, in Knowledge-Based Reactive Scheduling,
IFIP Transactions B-15, Amsterdam (The Netherlands), Elsevier Science
Publishers.

[6] Stephen F. Smith and Ora Lassila, 1994. “Toward the Development
of Mixed-Initiative Scheduling Systems”, in: Mark H. Burstein (ed.),
ARPA/Rome Laboratory Knowledge-Based Planning and Scheduling Initiative
Workshop Proceedings, San Francisco (CA), Morgan Kaufmann.

[7] Guy L. Steele, Jr., 1990. Common Lisp — the Language (second edition), Bed-
ford (MA), Digital Press.

[8] -, 1992. Common Lisp Interface Manager — User’s Guide, Menlo Park (CA),
Lucid.

27

Index

(setf client-stream), 18
(setf executor-queue), 14
(setf find-command), 19, 21
(setf server-process), 13
(setf terminatep), 14
*commands¥, 22
*server-trace®, 23
signal-server-errors, 24
wish-command?, 23
:function, 20

:init-token, 18

:name, 20

:package, 15

:queue, 14

:status, 20

:stream, 13, 18

accumulate-value, 17
accumulated-value, 17
add-to-queue, 22
asynchronous-command, 21
asynchronous-executor, 16

client, 18
client-init-token, 18
client-stream, 18
close-interface, 23
command, 20
command-execute, 19, 20
command-function, 19, 20
command-name, 19, 20
command-status, 19, 20
command-table, 21
connect-to-server, 18

28

disconnect-from-server, 18
DITOPS, 1
dpwish, 7

empty-queue-p, 16

eval_asynch_commands, 25

executor, 13

executor-find-queue, 13, 14

executor-output, 16

executor-package, 15

executor—process—command, 12, 15,
16

executor-queue, 12, 14

executor-read-next-command, 12, 15,
16

find-command, 16, 19, 21

init-interface, 23
insert-command, 8, 19, 21
installation, 7

kill-d, 23
kill-p, 23

message-queue, 22
notify_user, 25

opis_synch_command, 8, 25
OZONE, 1

queue-lock, 22
remove-from-queue, 22

server, 13

server-create-name, 11, 13, 15, 16
server-error, 24

server-process, 12, 13
server-run, 12-14

server-stream, 12, 13
server-trace, 24

start-daemon, 22

start_interface, 9, 25
synchronous-command, 21
synchronous-executor, 15

terminatep, 12, 14

29

